skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gilroy, Kellan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Although subduction zones are characterized by convergence, the upper plates of subduction zones exhibit a diverse range of deformation styles that are often inconsistent with regional convergence. While several theories have been proposed to explain these variations, the underlying factors driving these differences are still not fully understood. In this study, we analyze 24,000 km of active global subduction zones around the globe to determine how subduction zone obliquity affects deformation in the trench‐parallel and horizontal directions on land above subduction zones. We take advantage of recently published worldwide data sets of Global Navigation Satellite System (GNSS) velocities and global active fault catalogs in order to examine deformation at 13 of the world's forearcs. We analyze deformation over both short (decadal) timescales, captured by GNSS, and long (millennial to million‐year) timescales, observed through trench‐parallel active forearc faults. The results reveal a strong link between subduction obliquity and both the sense and amount of forearc rotation detected by GNSS, as well as the sense and rate of deformation along trench‐parallel strike‐slip faults. Unlike previous studies indicating that subduction obliquity affects forearc deformation only beyond a certain threshold, we demonstrate that even low to moderate obliquity significantly influences the observed deformation. 
    more » « less